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Evaluating Buoyancy Activated Cell Sorting (BACS) for T cell Isolation in
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% As the CAR T and TCR landscape evolves, robust manufacturing solutions that enable increased access to these POSITIVE SELECTION NEGATIVE SELECTION
transformative therapies through reduced cost and complexity must be developed. Rigorous process developmen’r 1 Whole Blood/ plond prodiict Blood product
and characterization is critical when identifying these solutions to deliver a safe and potent drug product to patients. Leukapheresis (
< Traditional autologous CAR T and TCR cell therapy manufacturing begins with T cell isolation from patient Blood Cell collection
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by negative selection using BACS. Buoyancy Activated Cell Sorting (BACS) utilizes antibody coated microbubbles to aterial ! iy l \
bind and remove contaminating cell types in the starting material (B cells, monocytes, granulocytes and red blood

cells). The microbubbles are devoid of animal material and produced under cGMP conditions making them suitable ' 4 _ CliniMACS Plus
for use in cell therapy. They are composed of a thin glass polystyrene microsphere which encapsulates a gaseous 3 gﬁ':hfn‘:mﬁ:'rgg ) Selected CDAYEDY cells h o, l BRY
sphere rendering them buoyant in the surrounding buffer. The microbubble bound cells float to the top layer of the cell population :f | 08
cell suspension leaving the “untouched” T cells at the bottom and allowing both the microbubbles and bound cells P . Bl Microbubble Separation
to be easily removed by evacuating the top layer of buffer. AT " @ Depleted non-T cell populations
“ In addition to effective T cell isolation, unlike direct immunomagnetic labelling which leaves the beads attached to 4
target cells and may infterfere with characterization assays such as flow cytometry, negatively selected T cells are Harvest and . l
free of bound antibody and more suitable for a wide variety of downstream assays immediately post selection. This gerisgggiig‘l’atm“ Harvest Positive Fraction Harvest Negative Fraction
. . . ) ) yzed The positively selected T-cells were The negatively selected T-cells
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% The purpose of this work was to evaluate the feasibility of this novel BACS technology and characterize the
performance of T cells isolated using BACS fo those isolated using MACS in a GMP representative CAR T Created with BioRender (BioRender.com)
manufacturing process. Additionally, we evaluate the performance of these GMP Microbubbles to isolate [Fig. 1] Selection Process. The above diagram describes the unit operation for Magnetic
untouched T cells directly from whole blood. Whole blood is a potential alternative starting material source that is Activated Cell Sorting (MACS) for positive selection and Buoyancy Activated Cell Sorting
less invasive and costly than traditional leukapheresis but poses a processing challenge due to the large volume of (BACS) for negative selection. Both methods were used to isolate T-cells, either by positive or

red blood cells.
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[Fig. 2] T Cell Recovery. The results represent the average
percent recovery of CD3* T cells from Leukapheresis (A), and
Whole Blood (B), respectively.
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[Fig. 4] Leukocyte Depletion. The results represent the
average percent depletion of B-cells, Granulocytes,
and Monocytes from Leukapheresis (A, C, E; 3 donors),
and Whole Blood (B, D, F; 2 donors), respectively.

< Starting with either Leukapheresis or Whole Blood, BACS yielded similar T cell recovery to MACS (Fig. 2). % (1043) Ancillary Materials for Cell, Gene, and Tissue-Engineered Products,
“ BACS produced CD3* T-cells with higher purity in comparison fo MACS (Fig. 3 and 4). % Cost comparison of separation methods and cell sorter price. Akadeum Life
% The growth kinetics between BACS and MACS demonstrated similar expansion characteristics (Fig. 6).
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[Fig. 3] Leukocyte Purity. Figure 3A, depicts the Leukapheresis phenotype for pre- © 20 ©
and-post cell separation. Figure 3B, depicts the Whole Blood phenotype for pre- 0]
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GROWTH KINETICS
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[Fig. 6] Cellular Growth. Figure 6A-D examine cellular growth kinetics among the fransduced cells from Leukapheresis enriched T cells. T cells
enriched from Whole Blood demonstrated poor or delayed expansion due to the increasing amounts of residual RBC (data not shown).
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In summary, BACS has great potential to be used as an alternative cell separation technology 1o MACS for T
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cell isolation. Additional T cell functional characterization should be evaluated.
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